490
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of fracture and moisture damage performance of wax modified asphalt mixtures

, &
Pages 142-155 | Published online: 15 Mar 2012
 

Abstract

In this study the fracture and moisture damage characteristics of wax modified asphalt mixtures were evaluated. Two types of commercial waxes (FT-paraffin and Asphaltan B) were added to bitumen of penetration grade 70/100. Using this wax modified and unmodified bitumen; total 48 specimens were produced from two sources of aggregates and two levels of gradation. Bitumen properties were determined by conventional test methods, Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR) testing. Thermal Stress Restrained Specimen Test (TSRST) was used to evaluate low temperature cracking resistance and cracking behavior of asphalt mixture was investigated at 0°C using Superpave Indirect Tensile Test (IDT).

The influence of wax on the asphalt mixture resistance to cracking and moisture damage performance has been evaluated using Hot Mix Asphalt (HMA) fracture mechanics and Superpave IDT test results. The addition of FT-paraffin and Asphaltan B showed better cracking and moisture damage resistance of the asphalt mixture compared to unmodified mixture, but FT-paraffin showed the largest effect on cracking resistance while Asphaltan B showed highest resistance to moisture damage. In BBR test results, mixtures modified with FT-paraffin showed lower limit m value (LmT) which implies minor negative effect in stress relaxation. However, according to TSRST results, the mixtures with both waxes had nearly same fracture temperature as mixture with unmodified bitumen.

Acknowledgements

This research was financially supported by The Swedish Road Administration, Royal Institute of Technology (KTH), Sweden and The Scientific and Technological Research Council of Turkey (TUBITAK).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 204.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.