Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 109, 2010 - Issue 4
33
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Effect of fugitive phase addition on porosity evolution and properties of stoneware tiles

, , &
Pages 219-224 | Published online: 18 Jul 2013
 

Abstract

Abstract

Different percentages of fugitive phase with three different average particles were added to the green porcelain compositions. The fugitive phase was burnt out during the sintering, and the shrinkage of the samples was proportional to the added volume. The lower the particle size of the fugitive phase was, the higher the shrinkage became. The properties of stoneware tiles as apparent density, linear shrinkage, modulus of rupture, porosity, roughness and water absorption were studied as function of the added fugitive phase. A reduction of the porosity was obtained when the added fugitive phase was <5 vol.-%. The modulus of rupture improvement was found in samples with higher density. The surface roughness increased by both the volume and the particle size of fugitive phase. Large added porosity volume was effectively eliminated, and the porosity was equilibrated to a fixed value related to the initial particle size of the fugitive phase. The main mechanism that contributed to the elimination of porosity during liquid assisted sintering was the gas diffusion. Large pores were hindered by the crystalline phases, and thus pore, coalescence was avoided in the porcelain stoneware.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.