3
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Fast Three-Dimensional Core Model for Digital Control in Boiling Water Reactors

&
Pages 10-25 | Published online: 13 May 2017
 

Abstract

A three-dimensional, coarse-mesh, nonlinear, robust core model adapted to the specific requirements of a digital power distribution control system for boiling water reactors (BWRs) is presented. Optimal core power control can be achieved with a coarse power distribution description if the simulation is accurate enough. A two-stage concept is used to make the model both accurate and fast. A unique computation with an exact but slow conventional simulator provides a detailed physical basis for a reference core state. This input data basis, homogenized to larger spatial zones, enables a fast, one energy group simulator with xenon dynamics to compute transients covering the entire range of states that occur during normal operation.

Validation tests have shown a large autonomy and good simulation qualities of the core model for several types of transients of interest for normal BWR operation. Its accuracy combined with fast execution, numerical stability, and ease in handling make the core model suitable for use in on-line core surveillance and control systems with real-time predictive capabilities. These same features also qualify it as a fast, quasi-static simulator for prediction of core behavior beyond the scope of digital control.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 409.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.